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The possibility of acoustic control of the two-dimensional instabilities of a lossless
plane shear layer of vanishing thickness is studied. The shear layer is formed from a
body of incompressible fluid sliding over another fluid at rest. It is unstable through
the generation of Kelvin–Helmholtz waves. We consider the possibility of adding to
this linearly unstable flow a simple source, driven in such a way that its field interferes
destructively with the instability to render the flow stable. The required strength of
the unsteady control source is determined in terms of the fluctuating velocity at some
fixed position in the moving fluid. We show that no unstable Kelvin–Helmholtz wave
could survive the action of such a source. Next, we examine the scope for constructing
the control signal from a measurement of the flow velocity at some fixed position.
The source is a linear functional of the monitored velocity and we give the transfer
function that would be required for the instabilities to be controlled. We prove that
such control action would completely stabilize the otherwise unstable vortex sheet,
and that other alternative sensor/actuator arrangements could also be effective. We go
on to show that our particular very simple arrangement could not in fact be realized
because, if required to work at all frequencies, it would not be causal. If we insisted
on causality the vortex sheet would then only be stabilized over most frequencies.
That would of course make the controlled flow completely different from the vortex
sheet whose instabilities are so well known – and troublesome. We conjecture that
there will exist some variations of the basic control arrangement described here that
are both physically realizable and effective over the required frequency range. From
our study of the initial value problem we have concluded that short perturbations
would be attenuated very rapidly.

1. Introduction
Instabilities are among the most prevalent features of fluid flows. Sometimes their

occurrence and their action are beneficial but much more often they show an adverse
action; they transform laminar flow into turbulence. One of the greatest nuisances
resulting from turbulence of high Reynolds number jets is its noise. This noise is so
loud as to threaten the commercial viability of supersonic aircraft on environmental
grounds. Few with knowledge of turbulence’s chaotic character can hold much expec-
tation that turbulence will ever be controlled and made quiet. Avoiding turbulence
altogether might be a simpler thing to do. A steady laminar jet would be silent, but so
different from a jet’s natural state that should it exist at all it would only do so under
highly artificial conditions. The steady, silent jet conforms with all the laws of motion
but is ruled out on stability grounds. Without extraneous interference, infinitesimal
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disturbances would grow and gain strength to become unmanageable and chaotic.
Indeed it is this fact, that the mean flow so readily passes on its energy to parasitic
eddies, that accounts for the robustness of shear layer turbulence.

Is it conceivable that the normal instability of the shear layer, the root cause of the
jet’s turbulence and noise, might possibly be avoided by active control? The benefits
of control would surely be enormous and could well be sought if only one knew
how to approach the problem. Control is bound to be difficult and may well turn
out to be impractical but, from the results of the model considered below, we see
no grounds for thinking the concept impossible. A review of the current approaches
with an emphasis on the mathematical techniques is presented in Moin & Bewley
(1994). An excellent presentation of the control theory for systems having a finite
number of degrees of freedom is given by Callier & Desoer (1991). Experiments to
influence the growth rates of shear layer perturbations have also been performed,
see e.g. Ronneberger & Ackermann (1979), Arbey & Ffowcs Williams (1984) and the
recent survey by Fiedler (1998).

Here we perform a thorough study of the control of one of the simplest hydrody-
namic instabilities by a very simple control system. We consider the two-dimensional
Kelvin–Helmholtz instability of a shear layer, which is formed if some body of fluid
moves with constant velocity above another part at rest. This system has infinite
extent and an infinite number of degrees of freedom. We assume throughout that the
perturbations of the shear layer are small, such that linearization is legitimate.

It is well known that unstable modes of the thin shear layer consist of plane
waves moving with half the speed of the moving fluid in the direction of the moving
fluid. All these Kelvin–Helmholtz waves are unstable with an amplification rate
equal to the angular frequency. Conversely, to every positive angular frequency and
amplification rate, which is equal to the angular frequency, there corresponds an
unstable Kelvin–Helmholtz wave. We introduce into this system an unsteady point
source. This problem with a prescribed source strength has been studied before
by Jones & Morgan (1972), Bechert & Michel (1975) and Ffowcs Williams (1982).
However, we make the source strength proportional to the velocity at some other
position in the flow. The eigenfunctions of this modified system are no longer the
Kelvin–Helmholtz waves but are given by a superposition of a Kelvin–Helmholtz
wave and the point source with a definite relation between the amplitudes of both.
The point source solution has been derived by the above mentioned authors with
other applications in mind. Their solutions are not really simple and tailoring one
of them to our application is not completely trivial. We therefore rederive the point
source solution by a different method and show that the Ffowcs Williams solution
can be obtained from our solution. This approach has furthermore the advantage of
making the presentation self-contained. Notice that we have ignored any interaction
of the source with the trailing edge which occurs at the beginning of the shear layer,
see e.g. Bechert & Michel (1975) and Crighton (1985). Modifications are therefore
required if the control system is close to the trailing edge.

One might expect that little can be done with the addition of a finite system to a
flow of infinite extent and think that the the angular frequencies and growth rates of
the instability modes cannot be influenced by this local change of the system. This,
as we will see, turns out to be correct. One can determine for every frequency an
impedance such that there is at that frequency a solution which remains bounded,
but otherwise the mode spectrum remains unchanged. This changes drastically if
one admits impedances which depend on the frequency. Then one can determine an
impedance such that there are bounded solutions for all frequencies. This impedance,
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our goal impedance, is chosen in such a manner that the Kelvin–Helmholtz wave
which is generated by the source cancels the incident Kelvin–Helmholtz wave. The
source strength and the amplitude of an incident Kelvin–Helmholtz wave are then
closely interrelated. We will consider only this choice of the impedance, then each
stability mode can be characterized either by the strength of the incident Kelvin–
Helmholtz wave or by the strength of the source. Here it is important to realize that
there is only one unstable Kelvin–Helmholtz wave to every frequency. Therefore one
might expect that a proper choice of the impedance for each frequency is sufficient
to control the Kelvin–Helmholtz waves for all frequencies.

We are interested in real frequencies, which are often studied in hydrodynamic
stability problems with the idea of spatial amplification in mind. It is perhaps not
surprising that the solutions remain bounded in the whole space for real frequencies
for our goal impedance also. The controlled shear layer is stable under spatial
amplification.

This goal impedance is not an analytic function of the frequency ω in the upper
complex ω-half-plane. This implies, see e.g. Landau & Lifschitz (1966), that the source
strength depends not only on the previous sensor values, but also on future values.
Our goal impedance is not causal. It turns out that this non-causality originates
from the non-causal character of the Kelvin–Helmholtz wave as it is not an analytic
function in the upper ω-half-plane. The source solution is causal. If one thinks of a
Kelvin–Helmholtz wave as being generated by some source it would of course be a
causal function. The non-causality enters when one performs the limiting process that
leads to the pure Kelvin–Helmholtz mode, the limit as the source position approaches
−∞. This difference which should be of little physical significance simplifies the
mathematics significantly. We will therefore study the system with our goal impedance.
We obtain the very interesting result that the imaginary part of the impedance is
positive for positive frequencies, provided the sensor position is not too far upstream
or too far downstream of the source position. In Landau & Lifschitz (1966) it
is shown that this leads to a positive generalized ‘dissipation’ and would exclude
unstable modes, if the impedance were causal. For a real system the impedance has to
be causal. So we have to approximate our goal system by a causal one. The question
of a good or even of the best causal approximation is a difficult one and outside
the range of this investigation. We show however that a small deviation from the
goal impedance at some value of the frequency leads to a significant reduction of
the amplitude of an incoming wave at that frequency. It is therefore not absolutely
necessary to generate the goal impedance exactly. As a causal impedance has to differ
from any non-causal one over some range of frequencies, a large reduction cannot
be achieved for all frequencies, and so a causal impedance can work only for most
frequencies. One also wants the real system to be stable. To achieve this, a sensor
position with positive generalized dissipation is sensible. This requires that the sensor
is placed not too far away from the source position. Notice that our equation for the
impedance shows that complete cancellation can be obtained for every sensor position.
The governing equations are elliptic; there are no well-defined influence regions. An
attempt to couple the source to a far away sensor leads to instabilities however.

We have designed the impedance such that a control of incident Kelvin–Helmholtz
waves is achieved. To study the effect of this control scheme on other perturbations,
we determined the solutions generated by point sources. As the point source solution
far downstream is dominated by Kelvin–Helmholtz waves one expects that the scheme
should be effective if the point source is located upstream of the sensor position. This
is exactly what we find. The amplitude of the Kelvin–Helmholtz wave radiated from
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Figure 1. Sketch of the flow region with the shear layer and the control loop between the velocity
sensor and the loudspeaker.

the point source is significantly reduced if the point source is situated in a certain
90◦-sector upstream of the sensor position. The frequency dependence of this sector
is small.

We also determine the response of the shear layer which is controlled with our
goal impedance to a short time disturbance and compare it to the response of the
uncontrolled shear layer. We assume that the disturbance requires a perturbation of
the control loudspeaker in the form of a Dirac δ-function in time and find a significant
motion of the shear layer only near the excitation time. It grows exponentially before
the δ-function control pulse and decays exponentially thereafter. There is no indication
of an instability. This is in marked contrast to an uncontrolled shear layer, where a
finite time singularity occurs.

2. Basic relations
We consider small perturbations of an infinite incompressible shear layer (figure 1).

We assume that the unperturbed shear layer is at y = 0 and that there is a flow
of uniform velocity U for y > 0 and no velocity for y < 0. Let y = η(x, t) be the
position of the perturbed shear layer. We require it to be small, such that higher-order
contributions may be neglected and that the boundary conditions can be fulfilled at
y = 0. The flow in both half-planes y < 0 and y > 0 can be described by potentials
ϕn, by stream functions ψn or by complex potentials Fn = ϕn + iψn. The index 1 refers
to the upper half-plane with flow and the index 2 to the lower half-plane.

To fulfil the boundary conditions at the shear layer, we reflect the flow in the lower
half-plane into the upper half-plane by replacing

y → −y, v2 → −v2, ψ2 → −ψ2, i.e. F̃2 = F2(z),

where the overbar denotes the conjugate complex. Then the reflected complex potential
of the flow in the lower half-plane F̃2 is again an analytic function of z = x+iy which
is however now defined in the upper half-plane. In the following we will for simplicity
omit the tilde, as the original F2 defined in the lower half-plane is never used again.
The reason for this transformation will become clear later. At the vortex sheet one
has the equality of pressure which can be written from the Bernoulli equation in
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terms of the complex potential as

Re

(
DF1

Dt
− ∂F2

∂t

)
= 0 with

D

Dt
=

∂

∂t
+U

∂

∂z
(2.1)

at the vortex sheet. The continuity of particle displacement at the vortex sheet
y = η(x, t) leads to

∂η

∂t
+U

∂η

∂x
= −∂ψ1

∂x
,

∂η

∂t
= −∂ψ2

∂x
and therefore

∂2ψ2

∂x∂t
+U

∂2ψ2

∂x2
= −∂

2ψ1

∂x∂t
at the vortex sheet. Omitting an arbitrary integration constant which may depend on
y and t, one can write

Im

(
DF2

Dt
+
∂F1

∂t

)
= 0 (2.2)

at the vortex sheet. We now write

DF1

Dt
− ∂F2

∂t
= f(z, t) and

DF2

Dt
+
∂F1

∂t
= g(z, t) (2.3)

and observe that f and g are analytic functions of z in the upper half-plane, provided
there are no obstacles in the upper and lower half-planes. Here the reason for the
reflection into the upper half-plane becomes clear. Only the reflected F2 is analytic in
the upper half-plane. The original unreflected F2 is analytic in the lower half-plane.
Furthermore we conclude from (2.1) that f(z, t) has vanishing real part at y = 0 and
from (2.2) that g(z, t) has a vanishing imaginary part there. By these properties one is
often able to determine the functions f and g by function theoretic arguments. For a
stability analysis of these equations, one would like to introduce a second imaginary
unit j and assume that all quantities are proportional to exp (−jωt). This can be done
if sufficient care is taken, see e.g. Möhring (1975). An alternative approach has been
used in Bechert & Michel (1975). Then all quantities Z are with real Zr, Zi, Zj, Zij of
the form

Z = Zr + iZi + jZj + ijZij .

One has the relations

(1∓ ij)j = ±(1∓ ij)i and (1− ij)(1 + ij) = 0 (2.4)

and for every Z

Z =
1− ij

2
Ẑ +

1 + ij

2
Ž =

1− ij

2
Ź +

1 + ij

2
Z̀ , (2.5)

where Ẑ and Ž are obtained from Z if every j in Z is replaced by i and −i
respectively. Similarly Ź and Z̀ are obtained from Z if every i in Z is replaced by j
and −j respectively. The numbers containing i and j can by multiplication with 1− ij
or 1 + ij be reduced to ordinary complex numbers with imaginary units i or j. This is
the reason for the frequent occurrence of the factors 1± ij in later equations. Equation
(2.4) shows that the product of non-zero factors can be zero; division can therefore
be performed only if sufficient care is taken. Equation (2.3) can then be written as

U
dF1

dz
= jωF1 − jωF2 + f(z), U

dF2

dz
= jωF1 + jωF2 + g(z)
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or in matrix notation
dF

dz
= BF + f (2.6)

with

F =

(
F1

F2

)
, B =

jω

U

(
1 −1
1 1

)
, f =

1

U

(
f
g

)
.

As (2.3) are real with respect to j, one has for the Fn the reality relations

Fn(ω) = F∗n (−ω∗), (2.7)

where F∗n denotes the complex conjugate of Fn with respect to j, i.e. every j occurring
in Z is to be replaced by −j. Equation (2.7) shows that the values of Fn for ω having
a negative real part can easily be determined from those of the positive real part.
It states that taking the real part amounts to the same as summing over positive
and negative frequencies. Equation (2.6) can be solved by the method of variation of
parameters. One needs a fundamental system of the homogeneous equation (2.6). It
is not difficult to show that one has

dΦ(z)

dz
= BΦ(z) for Φ(z) =

(
eγ1z −eγ2z

jeγ1z jeγ2z

)
(2.8)

with

γ1,2 =
ω

U
(±1 + j). (2.9)

If one now assumes F = Φb one obtains from (2.6)

db

dz
= Φ−1f with Φ−1 =

1

2

(
e−γ1z −je−γ1z

−e−γ2z −je−γ2z

)
and therefore

b =

(
b1

b2

)
=

1

2U


∫ z

0

e−γ1ζ(f(ζ)− jg(ζ)) dζ + c1

−
∫ z

0

e−γ2ζ(f(ζ) + jg(ζ)) dζ + c2

 (2.10)

and

F = Φ0

(
eγ1zb1(z)
eγ2zb2(z)

)
with Φ0 = Φ|z=0 =

(
1 −1
j j

)
. (2.11)

3. Stability of shear layers
3.1. Time-harmonic perturbations

We describe first the well-known stability modes of the infinite shear layer. There
the complex potentials F1 and F2 are regular in the upper half-plane and decay at
infinity. Equation (2.3) shows that this is also true for f and g. Furthermore f is purely
imaginary at the shear layer, i.e. at the real axis and g purely real there. Then both
possess by the Schwarz reflection principle an analytic continuation into the whole
complex plane and therefore vanish by Liouville’s theorem. The complex potentials
are therefore given by a solution of the homogeneous equation (2.8), i.e.

F = eγ1,2z−jωt = exp
(

jω
( z
U
− t
)
± ωz

U

)
(3.1)
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Figure 2. The integration paths used in the determination of the complex potentials.

with γ1,2 from (2.9). The potentials describing spatial amplification are directly ob-
tained from (2.9) and (3.1) with real ω

F = (1− ij) exp
(

jω
( z
U
− t
)
± ωz

U

)
. (3.2)

An attempt to control the shear layer can be made by introducing a source in the
no-flow region and coupling its amplitude to some flow quantity. So let us first solve
the problem of a source near a shear layer. Let

∆(z) = Q log (z − z0) and ∆(z) = Q log (z − z0) with Imi Q = 0 (3.3)

denote the complex potential of a source of strength Q at z0 and of its mirror
reflection at the real axis. The overbar denotes the complex conjugate with respect
to i, i.e. every i is replaced by −i. We assume that the source is situated in the
no-flow region in the lower half-plane and that it has the usual time dependence
proportional to exp (−jωt), i.e. ∂/∂t → −jω. ∆ of (3.3) denotes its reflection into the
upper half-plane, i.e. Imi z0 > 0. Then the functions f and g are no longer analytic in
the upper half-plane but both have a pole at z = z0. They can be determined from
(2.3) as

f = jω(∆(z)− ∆(z)), g =
D∆(z)

Dt
+

D∆(z)

Dt
. (3.4)

This addition of the mirror images makes f purely imaginary and g purely real (with
respect to i) on the real axis. Then one can rewrite (2.3) as

DF1 − ∆(z)

Dt
− ∂F2 − ∆(z)

∂t
=−U d∆(z)

dz
and

DF2 − ∆(z)

Dt
+
∂F1 − ∆(z)

∂t
=U

d ∆(z)

dz

(3.5)

with right-hand sides which are analytic in the upper half-plane. One can use the
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general solution of (2.11) and write for F

F =

(
∆(z)

∆(z)

)
+Φ0


−1 + j

2
Q exp

(
(1 + j)ω

U
z

)
⊂
∫ z

−j∞
exp (−[(1 + j)ω/U]ζ)

ζ − z0

dζ

1− j

2
Q exp (−[(1− j)ω/U]z)

∫ z

−∞
exp ([(1− j)ω/U]ζ)

ζ − z0

dζ

 .

(3.6)

Additionally Kelvin–Helmholtz (3.1) waves could be added. We have specified the
lower integration limits in the integrals in (3.6) such as to obtain a source solution
which decays in the far field – aside from the logarithmic terms in ∆(z) and ∆(z).
⊂∫ denotes that the integration path stays to the left of the pole at ζ = z0 (C⊂ in
figure 2). We will see that this leads to a solution fulfilling a radiation condition. We
require that the integration path in the lower integral in (3.6) remains everywhere in
the upper half-plane (e.g. along C2 in figure 2). The upper integral contains the second
imaginary unit j in the integrand and the integration boundary. This is a shorthand
notation for

⊂
∫ z

−j∞
exp (−[(1 + j)ω/U]ζ)

ζ − z0

dζ =
1− ij

2
⊂
∫ z

−i∞
exp (−[(1 + i)ω/U]ζ)

ζ − z0

dζ

+
1 + ij

2

∫ z

i∞
exp ([(1− i)ω/U]ζ)

ζ − z0

dζ.

Both integrals are exponential integrals, see Abramowitz & Stegun (1965), with their
singularity at ζ = z0. Because of that pole, the values of the integrals depend on the
integration path. The second integral is well defined, if we restrict the integration path
to the upper half-plane (e.g. along C1 in figure 2). In the first integral, the integration
path passes to the left of ζ = z0 and one obtains

I1 = exp

(
(1 + j)ωz

U

)
⊂
∫ z

−j∞
exp (−(1 + j)ωζ/U)

ζ − z0

dζ

= exp

(
(1 + j)ω(z − z0)

U

)
E

(
− (1 + j)ω(z − z0)

U

)
, (3.7)

where E denotes the exponential integral

E(z) =

∫ z

−∞
eζ

ζ
dζ. (3.8)

The exponential integral is a multivalued function and it is important to use the
values from the correct branch in (3.7). We are interested in z-values in the upper
i-half-plane and in ω-values in the upper j-half-plane. With the representation (2.5)
the integral (3.7) can be written as a sum of two contributions, both of which contain
only, apart from the 1± ij-factors, the imaginary unit j. Then the two complex half-
planes together form a complete complex plane and it is necessary to determine the
correct location of the branch cut and the correct branch. To be specific, we denote
by Eα(z) that branch of the exponential integral which vanishes at z → −∞ and has
its branch cut at arg z = α with α between −π and π. Eα(z) is then real for negative
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real z. We use (2.5) to express (3.7) in the plane with the imaginary unit j and write

I1 =
1− ij

2
exp

(
(1 + j)ω(ź − ź0)

U

)
E−3π/4

(
− (1 + j)ω(ź − ź0)

U

)

+
1 + ij

2
exp

(
(1 + j)ω(z̀ − z̀0)

U

)
Eπ/4

(
− (1 + j)ω(z̀ − z̀0)

U

)

=
1− ij

2
Ee−3π/4

(
− (1 + j)ω(ź − ź0)

U

)
+

1 + ij

2
Eeπ/4

(
− (1 + j)ω(z̀ − z̀0)

U

)
,

(3.9)

where we have written

Eeα = e−z Eα(z)

as shorthand. We have already indicated the correct branches. Let us explain briefly
the determination of the branch cut in the first integral. The phase angle of ω varies
between 0 and π in the complex j-plane. The same is true of ź − ź0. Then the phase
angle of ω(ź − ź0) varies between 0 and 2π and that of the argument of the first
exponential integral between − 3

4
π and 5

4
π. Integrating on the negative real axis keeps

the integration path to the left of the pole at ζ = z0. Similar arguments determine
the second contribution in (3.9), the main difference being that the phase angle z̀− z̀0

varies between −π and 0. One obtains for the second integral in (3.6)

I2 = exp

(
(−1 + j)ωz

U

)∫ z

−∞
exp ((1− j)ωζ/U)

ζ − z0

dζ

=
1− ij

2
exp

(
(−1 + j)ω(ź − ´z0)

U

)
E−π/4

(
(1− j)ω(ź − ´z0)

U

)

+
1 + ij

2
exp

(
(−1 + j)ω(z̀ − `z0)

U

)
E3π/4

(
(1− j)ω(z̀ − `z0)

U

)

=
1− ij

2
Ee−π/4

(
(1− j)ω(ź − ´z0)

U

)
+

1 + ij

2
Ee3π/4

(
(1− j)ω(z̀ − `z0)

U

)
. (3.10)

The potentials F are obtained as linear combination of I1, I2. Their asymptotic
behaviour for large values of z depends on the asymptote of Eeα(z) and this depends
critically on α. First one observes that one always has for Re z > 0

Eeα(z) ∼ 1

z
(3.11)

The behaviour of (3.11) is also found on the negative real axis and in the sector
between the branch cut and the negative real axis. This means that (3.11) is valid
everywhere if |α| < π/2. If however |α| > π/2 one has the sector π/2 < arg z < α
for positive α and α < arg z < −π/2 for negative α where instead of (3.11) there is
exponential growth of Eeα(z), namely

Eeα(z) ∼ 2πi sgn αe−z .

Equations (3.9) and (3.10) show that the I1, I2 and therefore also the potentials F do
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Figure 3. The real parts of the velocity of a free shear layer u1 in the half-plane with flow at y = 0
and x = −1 (full), 0 (dashed), and 1.1 (dot-dashed) as function of frequency.

not decay for all z and ω in their upper complex half-planes. For positive ω, there
is an exponentially growing contribution from I1 for positive x, which is actually a
Kelvin–Helmholtz wave generated by the source

F =

(
∆(z)
∆(z)

)
+Φ0

fKH (z0)Q(1− ij) exp

(
(1 + i)ω

U
z

)
0

 ,

fKH = π
j− 1

2
exp

(
− (1 + i)ω

U
z0

)
,

(3.12)

where contributions decaying for |z| → ∞ have been neglected. Equation (3.12) shows
that there is a Kelvin–Helmholtz wave of amplitude A at x → −∞ and one of an
amplitude which depends on A and Q at x → +∞, i.e. the source of strength Q
radiates an outgoing Kelvin–Helmholtz wave of strength fKH (z0)Q.

The response of the shear layer to a source of strength 1 is described by

F Q =

(
log (z − z0)
log (z − z0)

)
+Φ0

−1 + j

2
I1

1− j

2
I2

 , (3.13)

with I1 and I2 from (3.9) and (3.10). F Q determines the values of the potentials for a
harmonic varying source of strength Q. In the notation of Landau & Lifschitz (1966)
it is a generalized susceptibility and should fulfil the conditions of causality and reality,
i.e. it should admit an analytic continuation into the upper complex ω-half-plane and
the real and imaginary parts should be even and odd functions respectively. From
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Figure 4. The imaginary parts of the velocity of a free shear layer u1 in the half-plane with flow at
y = 0 and x = −1 (full), 0 (dashed), and 1.1 (dot-dashed) as function of frequency.

the explicit expressions in (3.13), (3.9), (3.10), one finds that this is actually the case
and that the potentials grow exponentially for large ω if arg(z − z0) < π/4, i.e. in
the region of growth of the Kelvin–Helmholtz wave, and decay elsewhere. As an
example figure 3 shows the real parts of the velocity u1 in the half-plane with flow at
y = 0 and x = −1, 0, and 1.1. The first two positions are outside the growth region
of the Kelvin–Helmholtz wave, and the velocity remains bounded. The third curve
(which has been multiplied by 0.1) shows the growth related to the Kelvin–Helmholtz
instability. All curves are even functions of ω in agreement with the reality condition.
Figure 4 shows the corresponding imaginary parts. Now the curves are odd functions
of ω, again in agreement with the reality condition. Notice that the imaginary parts are
negative for some positive values of the frequency. As the imaginary part determines
the ‘dissipation’, see Landau & Lifschitz (1966), this change of sign is certainly related
to the instability of the flow.

3.2. The pulse response

This action of the source on the shear layer can also be illustrated by a Fourier
transform to derive the flow in response to a δ-function disturbance. One obtains
from (3.6)

F =

∫ ∞
0


(

∆(z)

∆(z)

)
+QΦ0


−1 + j

2
⊂
∫ z

(1−j)∞

exp
(
(1 + j)(ω/U)(z − ζ))

ζ − z0

dζ

1− j

2

∫ z

−(1+j)∞

exp
(
(−1 + j)(ω/U)(z − ζ))

ζ − z0

dζ


e−jωt dω,

(3.14)
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where the incident Kelvin–Helmholtz wave has been omitted. For simplicity, we have
integrated only over positive frequencies and include the contributions from negative
frequencies by taking the real part. We interchange the ω- and ζ-integration and
obtain for the upper integral in (3.14)

I1 =

∫ ∞
0

⊂
∫ z

(1−j)∞

exp
(−jωt+ (1 + j)(ω/U)(z − ζ))

ζ − z0

dζ dω

=

∫ ∞
0

[
1− ij

2
⊂
∫ z

(1−i)∞

exp
(−iωt+ (1 + i)(ω/U)(z − ζ))

ζ − z0

dζ

+
1 + ij

2

∫ z

(1+i)∞

exp
(
iωt+ (1− i)(ω/U)(z − ζ))

ζ − z0

dζ

]
dω

=
1− ij

2
⊂
∫ z

(1−i)∞
dζ

(it− (1 + i)((z − ζ)/U))(ζ − z0)

+
1 + ij

2

∫ z

(1+i)∞
dζ

(−it− (1− i)((z − ζ)/U))(ζ − z0)
(3.15)

provided the integrals converge, i.e. ζ is restricted in the first integral to Re (1 + i)
(ζ − z) > 0 and to Re (1 − i)(ζ − z) > 0 in the second. The integration paths in
the integrals of (3.15) are therefore to be taken in a half-plane, which is bounded
by a straight line through ζ = z of slope ±45◦. The integration paths are therefore
not allowed to encircle the singularities originating from the first factors in the
denominators of the integrands in (3.15).

We want to assume branch cuts from the poles of the integrand at ζ = z0 and at
ζ = z − 1

2
(1 + j)Ut to ζ = −∞ and obtain

I1 =
U

2
(1− j) ⊃

∫ z

(1−j)∞
dζ

(ζ − z + 1
2
(1 + j)Ut)(ζ − z0)

=
U

2
(1− j)

log−π( 1
2
(1 + j)Ut)− log−π(z − z0) + (1− ij)πi

(z − z0 − 1
2
(1 + j)Ut)

, (3.16)

where log−π denote that the branch cut has to be chosen at the negative real axis.
Then the pole at ζ = z0 is to the left of the integration path. We therefore have to
subtract a residue contribution from that pole in I1. The second integral in (3.14) is
obtained from the first by replacing U by −jU. Furthermore the integration is now
extended from ζ = −∞ to z. Therefore the branch cut can be taken from the poles
of the integrand to ζ = +∞ and one obtains

I2 = −U(1 + j)
log0( 1

2
(1− j)2Ut)− log0(z − z0)

2(z − z0 − 1
2
(1− j)Ut)

and therefore

F =

(
∆(z)

∆(z)

)
δ(t) +

UQΦ0

2


log−π(z − z0)− log−π( 1

2
(1 + j)Ut)− (1− ij)πi

z − z0 − 1
2
(1 + j)Ut

log0(z − z0)− log0( 1
2
(1− j)Ut)

z − z0 − 1
2
(1− j)Ut

 .
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Now the logarithmic contributions in the first and the second component of the
second column vector are just the complex conjugate with respect to j of each other
if both logarithms have the branch cut at −π. Then they would contribute after
multiplication with Φ0 only to the imaginary part of F , which is of no physical
significance. The two branches of the logarithm differ only in the lower half-plane,
namely

log0(α) = log−π(α) + 2πiH(−Im (α)),

where H(−Im (α)) denotes the Heaviside-function, which is 1 for Im (α) < 0 and zero
for Im(α) > 0. As z−z0 is restricted to the upper half-plane, one obtains contributions
to ReF only from the second logarithm

Rej F =

(
∆(z)
∆(z)

)
δ(t)− πiUQ

2
Rej Φ0


1− ij

z − z0 − 1
2
(1− j)Ut

(1− ij)H(t) + (1 + ij)H(−t)
z − z0 − 1

2
(1− j)Ut

 . (3.17)

Now the first row is the complex conjugate of the second row for t < 0. A contribution
to the real part is obtained only for t > 0, namely

Rej F =

(
∆(z)
∆(z)

)
δ(t)− πiUQ

2
H(t) Rej Φ0


1− ij

z − z0 − 1
2
(1 + i)Ut

1− ij

z − z0 − 1
2
(1− i)Ut

 . (3.18)

The solution can be visualized as generated by two dipoles which are triggered by
the source and which propagate with a velocity U and angles ±45◦ to the x-axis. One
of them reaches the shear layer at a definite finite time and generates a singularity in
the flow region. The solution vanishes for negative times; it is causal. This is exactly
the solution obtained before by Ffowcs Williams (1982). Notice that the occurrence
of the finite time singularity is not restricted to a δ-function-type source distribution.
One obtains a source distribution with a Heaviside-function behaviour if (3.18) is
integrated with respect to the time. Then a monopole singularity occurs at a finite
time.

4. The controlled shear layer
Let us now assume that the motion of the shear layer consists of an incident

Kelvin–Helmholtz wave and of a source and that the source strength is a linear
multiple of the velocity component u in the x-direction at some sensor position zse in
the flow region:

Q = Lu(zse). (4.1)

The velocity is a superposition of a contribution from the source and from the
incident Kelvin–Helmholtz wave, say

u(zse) = QuQ(zse) + AuKH (zse).

The control relation (4.1) then leads to

Q = L
(
QuQ(zse) + AuKH (zse)

)
. (4.2)
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Because of (3.12) the amplitude of the outgoing Kelvin–Helmholtz wave is given by
fKH (z0)Q+ A. If we require it to vanish, we obtain

1 = L
(
uQ(zse)− fKH (z0)uKH (zse)

)
. (4.3)

The terms in brackets depend on the frequency ω. For a constant impedance L a
control of outgoing Kelvin–Helmholtz waves can be achieved but only for one value
of ω. If one admits an impedance that depends on the frequency, one can suppress all
outgoing Kelvin–Helmholtz waves if one fulfils (4.3) for all frequencies. Notice that
L is not an analytic function of ω in the upper complex ω-half-plane. This originates
not from uQ but from uKH , as we have shown in the last section that uQ is an analytic
function in the upper ω-half-plane. The Kelvin–Helmholtz wave, which we have
written in (3.6) as being proportional to exp (ω(1 + j)z/U) should be proportional
to exp ((|ω| + jω)z/U) for all ω because of the reality condition, and this is not an
analytic function of ω. This implies that the impedance L is not a causal function,
i.e. the source strength determined from (4.1) depends not only on previous values
of u, but also on future values. This apparently unacceptable requirement originates
from the non-causality of the Kelvin–Helmholtz wave. If one observes that a source
far upstream generates a Kelvin–Helmholtz wave causally, one notices that there are
causal impedances which differ little from the non-causal impedance of (4.3). They
depend however on the position of the upstream source and are more complicated
than the impedance from (4.3). We will therefore assume (4.3) to be valid.

Here it might be useful to determine the response of the controlled shear layer to
an external excitation s. So let us assume that instead of (4.1) the source strength Q
is now given by

Q = Lu(zse) + s.

The velocity field is again a superposition of a source and a Kelvin–Helmholtz
contribution

u(z) = QuQ(z) + AuKH (z) = (Lu(zse) + s)uQ(z) + AuKH (z). (4.4)

The value of u at the sensor position is now

u(zse) = (Lu(zse) + s)uQ(zse) + AuKH (zse)

from which one can determine u(zse). Inserting this value into (4.4) leads with (4.3)
after some simplifications to

u(z) = A

(
LuKH (zse)

1− LuQ(zse)
uQ(z) + uKH (z)

)
+

s

1− LuQ(zse)
uQ(z) (4.5)

≈ A
(
uKH (z)− 1

fKH (z0)
uQ(z)

)
+

s

LfKH (z0)uKH (zse)
uQ(z), (4.6)

where the approximate equality is true only in the working region, i.e. for those
frequencies where the impedance agrees with the goal impedance. Equation (4.6)
shows that an incident Kelvin–Helmholtz wave is again cancelled; the external source
however generates a source solution with an associated Kelvin–Helmholtz wave.
Equation (4.5) shows also that a zero of 1 − LuQ(zse) in the upper half-plane would
lead – even for vanishing external source – to an unstable Kelvin–Helmholtz wave,
i.e. the system would be unstable. The same would be true for a zero of L̃ =
(1−LuQ(zse))/[fKH (z0)uKH (zse)] as the denominator is an exponential function which

does not vanish and has no singularity. Equation (4.3) shows that L̃ agrees in the
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working region with the goal impedance. One is therefore well advised to choose a
sensor position which for positive frequencies leads to a positive imaginary part of
the goal impedance.

One may remark that there is not a complete suppression of the Kelvin–Helmholtz
waves if (4.3) is not fulfilled exactly. A small error in (4.3) would not annihilate
an incident Kelvin–Helmholtz wave completely, but would significantly reduce its
amplitude. To show this let us assume that we have in (4.2) an impedance L + ∆L
where L fulfils (4.3). It is easy to check that then an incident Kelvin–Helmholtz wave of
amplitude A is not annihilated completely but an outgoing wave of amplitude ∆A with

∆A =
uQ(zse)− fKH (z0)ukh(zse)

1− (L+ ∆L)uQ(z1)
A∆L

remains and this is small for small ∆L.
A useful result is obtained if we eliminate A in (3.6) in favour of Q. Then one

observes that the Kelvin–Helmholtz term is just equal to the residue at ζ = z0 of the in-
tegral. This means that the complex potentials of the stability modes can be written as

F =

(
∆(z)
∆(z)

)
+ QΦ0


−1 + j

2
⊃
∫ z

−j∞

exp
(
(1 + j)(ω/U)(z − ζ))

ζ − z0

dζ

1− j

2

∫ z

−∞

exp
(
(−1 + j)(ω/U)(z − ζ))

ζ − z0

dζ

 , (4.7)

where ⊃∫ denotes that the integration path now remains to the right of the pole at
ζ = z0 (C⊃ in figure 2). It is not difficult to verify that this mode does not grow expo-
nentially in the upper half-plane for all physically relevant frequencies with Rej ω > 0.
This is also true for purely real frequencies. This solution fulfils the control condition
(4.3), and it can conveniently be used to determine the impedance L.

The integrals differ only by the residue contribution from the pole at z = z0 from
the results of (3.6). We can therefore write

F =

(
∆(z)
∆(z)

)
+ QΦ0

−
1 + j

2

(
I1 + (1− ij)πj exp

(
(1 + j)

ω

U
(ź − ź0)

))
1− j

2
I2


with I1 and I2 from (3.9) and (3.10). The solution that involves a δ-function source is
again easily obtained from the solution of the free shear layer by subtraction of the
residue contribution. One obtains from (3.17)

Rej F =

(
∆(z)
∆(z)

)
δ(t)− πiUQ

2
Rej Φ0

 0

(1− ij)H(t) + (1 + ij)H(−t)
z − z0 − 1

2
(1− j)Ut

 .

This equation shows that the motion of a ‘controlled’ shear layer consistent with a
δ-function perturbation of the control source begins at t = −∞, well before the onset
of the control perturbation, and extends to t = ∞. The incident instability mode of
course is not caused by the controller; it consists of a dipole moving in the mirror
image plane and approaching the physical half-plane which has a strength opposite
to that which occurs in the free shear layer solution of Ffowcs Williams. At t = 0
it reaches the image of the source and cancels the dipole which eventually leads to



42 J. E. Ffowcs Williams and W. Möhring
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Figure 5. The real and imaginary parts of the shear layer displacement of the controlled shear layer
for frequencies ω = 1 (full) and ω = 5 (dashed) as function of x. The real parts are approximately
even, the imaginary parts odd, functions of x. The point source is situated at z0 = 0− i. The velocity
U is assumed as U = 1.

the singularity in the physical space. For positive times only the dipole moving in the
direction away from the shear layer remains.

Some numerical results concerning the controlled shear layer are shown in figures 5
to 7. We restrict ourselves to positive frequencies and assume a continuation to nega-
tive frequencies with the reality condition. The non-causal character of these solutions
is not considered to be serious. In figure 5 the real and imaginary parts y = η(x) of
the particle displacements of the controlled shear layer in arbitrary units are shown
for frequencies ω = 1 and ω = 5. The source is in the lower no-flow half-plane with
z0 = x0 + iy0 = i if reflected into the upper half-plane; the velocity U is chosen as
U = 1. It is of course independent of the sensor position, as the necessary source
strength required is determined by the incident Kelvin–Helmholtz wave. The displace-
ments are approximately symmetric around x = 0; an exponential growth does not
occur. There is little dependence on ω of the real part (which is approximately an even
function) and a noticeable dependence on ω of the imaginary part. The real parts
of the impedance determined from (4.3) are shown in figure 6. Three different sensor
positions are shown, namely zse = xse + iyse = ±0.3 and zse = 0.6. The real parts at
zse = ±0.3 differ only in sign.This is understandable if one compares it with the shear
layer displacements from figure 5. In figure 7 the imaginary parts are shown at zse = 0.3
and at zse = 0.6. They would be identical at zse = −0.3 and at zse = −0.6. It seems very
remarkable that the imaginary part is positive for positive frequencies at zse = 0.3 and
has both signs for the larger zse . This implies a positive ‘dissipation’ for all frequencies
for zse = 0.3. This is in marked contrast to the behaviour of the uncontrolled shear
layer shown in figure 4. In figure 8 the non-causal impedance is compared with a causal
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Figure 6. The real parts of the control impedance as functions of frequency. The distance of the
source from the shear layer is 1, the sensor positions are at zse = 0.3 + 0 i (full), zse = −0.3 (dashed),
and at zse = 0.6 (dot-dashed). The mean velocity U has been put to 1.
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Figure 7. The imaginary parts of the control impedance as functions of frequency. The distance
of the source from the shear layer is 1, the sensor positions are at zse = 0.3 (full) and at zse = 0.6
(dashed). The mean velocity U has been put to 1.
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Figure 8. Comparison between the real (dashed) and imaginary (full) parts of the non-causal
impedance of figure 6 at zse = 0.3 and the real (dot-dashed) and imaginary (dotted) parts of a
causal one which was obtained from the control of a supposed point source at z = −5 + i such that
the potential vanishes at z = 5.

one. The causal impedance was obtained by shifting the generation and detection
position from −∞ and +∞ to finite values ∓5. We therefore require that the actua-
tor source is determined such that the potential of a source solution with source at
z = −5+i vanishes at z = 5 with a sensor position at zse = 0.3. Notice that differences
occur only for small frequencies. This should not be too surprising. Differences are to
be expected for those frequencies where the wavelength becomes comparable with the
distance to the Kelvin–Helmholtz wave generating source, i.e. 5 in figure 8. Further
light is shed on the difference if one considers the Fourier tranform of the impedance
from ω-space to t-space, namely the transfer function. The non-causal transfer func-
tion contains precursors, which are lacking in the causal one. Therefore the time
integral over the square of the difference of the transfer functions is never smaller
than that integral taken over the precursor. Then Parseval’s theorem shows that the
frequency integral over the modulus squared of the difference of the impedances also
remains finite. Figure 8 shows that these differences can be shifted to small frequencies.

We have designed the impedance for the control of incident Kelvin–Helmholtz
waves. To study its effectivity for other perturbations, the motion of the controlled
shear layer with a point source has been determined. As the flow of a source in its
downstream region is dominated by the Kelvin–Helmholtz wave, one expects that
Kelvin–Helmholtz waves from upstream sources could be suppressed, while a source
situated far downstream of the positions of the sensor and of the source could
probably not be controlled. The flow field of a perturbation in the upstream region
is not determined by the rapidly decaying Kelvin–Helmholtz wave, but by the slower
decay of the source. The control system would therefore greatly overestimate the
strength of a source situated downstream. Figure 9 shows that this is actually true.
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Figure 9. Control of point sources. Point sources positioned in the shaded part of the upper
half-plane can be controlled effectively; sources ω = 1 (a) and ω = 5 (b). The control system sensor
is at zse = 0.3 + 0i and the actuator at z = −i. The shading levels show the amplitude ratios of
the incident and the counteracting Kelvin–Helmholtz wave. There is a balance between them for
upstream sources of the initial instability, which is therefore cancelled by the control action.

There the ratio of the amplitudes of the Kelvin–Helmholtz waves of the source and
of the control source are shown. Light regions indicate a dominance of the Kelvin–
Helmholtz wave from the source while the Kelvin–Helmholtz wave from the control
source dominates if the source is located in a dark region. Both amplitudes differ by
less than 10% in regions which are not black or white. The far upstream region is
gray. This indicates that a source situated there would effectively be cancelled. Only
the region y > 0 is shown, i.e. the control of perturbations in the half-space with
mean flow. The same reduction of the Kelvin–Helmholtz waves occurs for sources
in the no-flow region. Figure 9(a) refers to ω = 1 and 9(b) to ω = 5. One observes
the ±45◦ sector which is so characteristic for Kelvin–Helmholtz instabilities. The
waviness illustrates the complicated behaviour which analytic functions show at the
boundaries between regions of different asymptotic laws.

5. Conclusion
A study of the influence of a source on a shear layer has shown that the instability

of a vortex sheet can be suppressed if a linear relation between the source and
the velocity at an arbitrary position is assumed. It is required that the constant of
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proportionality, the impedance, depends suitably on the frequency, i.e. the source
strength is some functional of the velocity history at the sensor position. Then the
source generates Kelvin–Helmholtz waves which are in antiphase to incident Kelvin–
Helmholtz waves. This impedance turns out to be non-causal. We show that it can
be approximated for most frequencies by causal ones. The control mechanism works
effectively only for these frequencies. For the remaining frequencies incident Kelvin–
Helmholtz waves are not completely annihilated, and they may even be amplified. A
study of an initial value problem shows that a δ-function disturbance is suppressed
effectively by this control in marked contrast to an uncontrolled shear layer where
one meets a finite time singularity.

Most of this research was done while W. M. was the quatercentenary visiting
research fellow at Emmanuel College, Cambridge.
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